在Ubuntu22.04中安装cuda、cuDNN
Ubuntu 22.04 下安装cuda、cuDNN的过程。
一、检查是否安装nvidia显卡
通过命令lspci | grep -i nvidia
查看是否安装nvidia显卡,如果有输出则说明系统有nvidia显示。
输出如下:
1 | 00:05.0 3D controller: NVIDIA Corporation GP102GL [Tesla P40] (rev a1) |
二、安装NVIDIA显卡的官方驱动
增加官方的apt源
从NVIDIA官网CUDA下载页面获取apt源。
如上图所示的界面,选择Linux –> x86_64 –> Ubuntu –> 22.04 –> deb(network),
具体的系统架构,根据真实系统进行选择。可以得到具体的安装命令。执行安装命令
1
2
3wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update获取可用驱动程序
1
ubuntu-drivers devices
输出信息为:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18== /sys/devices/pci0000:00/0000:00:02.0/0000:04:00.0 ==
modalias : pci:v000010DEd00001B38sv000010DEsd000011D9bc03sc02i00
vendor : NVIDIA Corporation
model : GP102GL [Tesla P40]
driver : nvidia-driver-515 - third-party non-free
driver : nvidia-driver-545 - third-party non-free
driver : nvidia-driver-525 - third-party non-free
driver : nvidia-driver-535-server - distro non-free
driver : nvidia-driver-470 - distro non-free
driver : nvidia-driver-520 - third-party non-free
driver : nvidia-driver-525-server - distro non-free
driver : nvidia-driver-535 - third-party non-free
driver : nvidia-driver-550 - third-party non-free recommended
driver : nvidia-driver-470-server - distro non-free
driver : nvidia-driver-418-server - distro non-free
driver : nvidia-driver-450-server - distro non-free
driver : nvidia-driver-390 - distro non-free
driver : xserver-xorg-video-nouveau - distro free builtin找前面为driver,后面为recommend 的记录。
上面的输出结果为:nvidia-driver-550
安装驱动
1
sudo apt install nvidia-driver-550
安装完成后,重启电脑
查看驱动是否安装成功
1
nvidia-smi
输出结果如下显示有一块显卡:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.54.14 Driver Version: 550.54.14 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 Tesla P40 Off | 00000000:00:05.0 Off | 0 |
| N/A 28C P8 11W / 250W | 0MiB / 23040MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| No running processes found |
+-----------------------------------------------------------------------------------------+
三、安装cuda、cuDNN
下面是已经设置过官方源(在本文第二部分已经设置过官方源)后的执行过程:
执行安装命令
1
2sudo apt-get -y install cuda
sudo apt-get -y install cudnn配置环境变量并验证
bash环境下,通过命令
cat >> .bashrc << EOF
逐行输入以下文本zsh环境下,通过命令
cat >> .zshrc << EOF
逐行输入以下文本1
2
3
4export CUDA_HOME=/usr/local/cuda
export LD_LIBRARY_PATH=\$CUDA_HOME/lib64\${LD_LIBRARY_PATH:+:\${LD_LIBRARY_PATH}}
export PATH=\$CUDA_HOME/bin\${PATH:+:\${PATH}}
EOF首次配置完环境变量后通过
source .bashrc
或source .zshrc
命令使环境变量生效。配置完环境变量后,通过命令
nvcc -V
检查cuda版本,输出结果如下所示:1
2
3
4
5nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Tue_Feb_27_16:19:38_PST_2024
Cuda compilation tools, release 12.4, V12.4.99
Build cuda_12.4.r12.4/compiler.33961263_0验证与测试
- 安装必要的依赖
1
sudo apt-get install libfreeimage3 libfreeimage-dev
- 编译测试代码
1
2
3
4cd ~
cp -r /usr/src/cudnn_samples_v9 ./
cd cudnn_samples_v9/mnistCUDNN
make clean && make- 运行测试代码
1
./mnistCUDNN
如果cudnn安装成功会显示如下信息:
1
Test passed!
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 许灵的技术笔记!
评论